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ABSTRACT

The problems in magnetohydrodynamics, in which an inviscid compressible
£f1luid with small conductivity flows steadily past a slender body of an arbitrary
cross section, in the presence of an applied magnetic field parallel to the uni-
form flow are considered. By the use of the slender body approximation we shall
discuss the character of the velocity and the magnetic fields, and obtain the drag
and the lateral force exerted on the body. For examples, the flows past a body of
an elliptic cross section and a body of revolution at a small incidence will be
discussed. It is noticeable that the induced drag for a slender body of revolu-
tion with pointed nose and tail ends is negative, and the lift for the same body
takes the negative sign for a positive incidence.
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INTRODUCTION

Recently Sears and Resler (1) investigated the flow of a nom-viscous in-
compressible fluid witl an electrical conductivity past a two-dimensional thin ob-
stacle by the linearized theory. In their paper, the conductivity of fluid is
supposed to be infinite or very high. The same problem for an arbitrary conduc-
tivity was studied by McCune (2). The correlation effect between the compressi-
bility and the conductivity was studied by Taniuchi (3), Kogan (4), McCune and
Resler (5), and Sears (6). In these papers, the conductivity of fluid is supposed
to be infinite., The flows of the non-viscous compressible fluid with a small con-
ductivity past a two-dimensional thin body, and a body of revolution at zero inci-
dence were studied by Sakurai (7), (8), and Kusukawa (9), respectively. Sakurai
and Kusukawa take the magnetohydrodynamic Stokes' and Oseen's approximations, re-
spectively. Resler and McCune (10) studied the flow of a compressible fluid with
an arbitrary conductivity past a sinusoidal wall. Ando (11), (12), discussed the
character of the linearized equation for the flow of a compressible fluid with an
arbitrary conductivity past a thin body, in the presence of the uniform applied
magnetic field in an arbitrary directiomn.

In the present paper we shall study the flow of a non-viscous compressible
fluid with a low conductivity past a slender body of an arbitrary cross section,
in the presence of a uniform applied magnetic field parallel to the uniform flow.
We shall linearize the fundamental equation, and apply the slender body theory
(13) to the present magnetohydrodynamic flow. The induced electric field is quasi-
two-dimensional in the sectional plane. Both the velocity and the magnetic fields
can be decomposed into the axial field and the irrotational two-dimensional field
in the sectional plane. We shall discuss the circulation of fluid. The total
force exerted on the body will be calculated., For an example, the drag and the
11ift for a body of revolution with pointed nose and tail ends at a small incidence
will be studied. It is worthwhile to notice here that the induced drag is nega-
tive, and the 1ift is negative for a positive incidence.




I FUNDAMENTAL EQUATIONS FOR FLUID FLOW

We shall consider the flow of a non-viscous compressible fluid with a low
electrical conductivity® past a body of an arbitrary cross section, in the
preuence of an applied uniform magnetic field H? parallel to the uniform flow
US . We shall take the cms electromagnetic system of units and the cartesian
coordinates x*, y*, g% where s* is parallel to the uniform flow. For simplicity,
we shall notmalize the physical quantities with respect to the length Lf of the
body, the uniform velocity U, » the uniform magnetic field }I , and the density
fu‘ and the temperature T in the uniform flow such that

& s <* u* vt w¥
;;::-Iji z = -igr- Ss= -i?r- us= -II; v = ‘II: we= \J:’

41‘ )4 . ex e Cs
e brwE Rty el o oG

lx"i“ﬁ;i 1,:‘*_"“1;_13 1‘-_“1‘11}__!:-

where u, v, w, denote the components of the perturbation velocity, L: ’ h, ,k,
the perturbation magnetic field, & ,€y ,€s the induced electric field, j. ,jy
;, » the induced electric current density, p the pressure, @ the density, T the
temperature, and the notations with and without asterisk represent the physical
and the dimensionless quantities, respectively. For convenience we shall intro-
duce the dimensionless parameters defined by

&3 K112, ¥
S = TrpryE R 4net UL,
. [ ]
S L W )
Q= SR S H. Uo L.
prurs
L
where S and Rm are the pressure number and the magnetic Reynolds number, respec-
tively.

Supposing that the magnetic permeabilities of both the body and the fluid
are unity, and the fluid is non-viscous and thermally non-conducting, we can write
the equation of motion, the equation of continuity, the Ohm's law, the Maxwell's
equation, and the conservation of energy in the following form:




W Tz 7 3 (e + 'gr-—{humxgt.\ (1a)

2w 33 ¥ L (e w)T ‘% 3 . _h hy - 3 (m,,)% (1b)
‘14.3—1;+'U'31‘;+ (lf‘ur)g‘:-&é gi; s iﬁ b - } (1c)
3_‘ (f’u)f-g—y—(r\r)t%e(ryew) a0 (2)
o Ron (v (1) = (1ea) v 30

jy:R'm{(low)L‘ -u.(h-tn)*eys ) (3b)

§s = Rmi““i - h, +e¢§ (30)

‘h 2&1.1 (4c) %%*%%1 +>_);.'=o (44)
aa% ) ;ae; co (Le) %.:_’ -5;; =5 (u£)
Qa_‘;’: - 2;: =0 (4g) a;: +D§S~}1 +?;; a © (4h)

ce T f{ugl; ¢\r§' ’(m.:)%l;} :ﬁr:-{..,?_afi +v3:‘;’+(44w)%£}

(5)
2 Litviveded

where Cv denotes the specific heat of the f1u1d

When the conductivity O' of the fluid is low, the coupling between the
velo¢ity and the magnetic field is small, Actually the uniform applied magnetic
field is scarcely distorted for a very small conductivity. As the conductivity
increases, the coupling becomes strong. It is well known that the magnetic
field is frozen into the material in the extreme case of infinite conductivity,
From these considerations, we can suppose that components of perturbation magnetic
field h; , h, ’ ,.. are the order of magnitude of the thickness ratio ¢, of
the body, at most, for a not so large conductivity,such that :

for Q&)1 and Rm € {
o(ha) 5 0(T) Olh) $6(T) o(h,)$ (7)) (6a)

On the other hand, we can estimate the order of magnitude of the components




of the perturbation velocities and the density near the surface of the body based

on the knowledge of the conventional flow past a slender body without a magnetic

field (13) such that 1
0w =0(Z) olr)=0(%) ofw)=0(Tley)

O(r) =i+0(TMgz) T &1

Remembering these order estimations, and retaining the leading terms, from Equa-
tions (3a), (3b) and (3c) we obtain

(6b)

§x = Rum (v-hy+ex) (7a)
37 R (hy-u+ey) (7b)
483 = R (u l'a'-'\rL--f-es) (7¢)

Since every term in each equation may be considered to be the same order of magni-
tude, we have

olex)=0(z) Ole)=0(7) ole)=0(z*)
Oy O(R.T) 0l4y)=0(RaT) ©4s)-o(Ru2?) (6¢)

We shall take a line element 44 along a stream line defined by

w _ dx v _dg l+w _ ds

———

x
¢ 44t q T du 3 al

where § denotes the magnitude of the nondimensional velocity. Integrating Equa-
tions (la)-(lc) with respect to € along a stream line, and remembering the order
of estimations (6a)-(6c) we shall obtain

]
= _ - T _ T -
Co=-2w-(u"-2*) 2Qf.{(v—h,)(V-L,+e,_).;(l,,-u)(;,,-u-rc,)}dj (8a)
.
10(@%)+0(T*leg 7,)
where €4 denotes the pressure coefficient defined by
. *
- £
! YV LA
Y Po Uo
Since the body is very thin, and stream lines are almost parallel to the uni-
form flow velocity, we can approximately replace the variable £ by S. This is the
quadratic formula for the pressure coefficient. If we put Q=S in Equation (8a)
we have the pressure formula for the conventional case (14). By the use of Equa-
tion (8a) we can calculate the pressure distribution, if we find the velocity and
the magnetic field over the body.
Especially in the axially symmetric case, the induced electric field can be

shown to be zero because of the geometrical symmetry.(9) Thus Equation (8a) is
reduced to

Ce= =2(p-*.)

1 3
C..'-:-ZW’ (u‘f‘u-‘)- z_ﬂ% J(j; ‘37‘)45 (8b)




The last term of the right hand side of this equation represents the energy loss
due to Joule heat. The pressure drop is connected with the irreversible process.

IT LINEARIZATION OF EQUATIONS FOR FLUID

We shall linearize the fundamental equations for the fluid flow obtained in
the last section. If we neglect the terms involving the square of perturbation
quantities, the equations of motion and the equation of continuity are reduced to

2e P - { -
2% ....a_‘E Qles+the-u (9a)
Ju L OP _ - -
r+3r-a f-ex +hy-21 (9b)
w2
¥+3T.0 (9¢)
ﬂ.‘-.,?_‘:...D‘“'., P =0 (10)
dx oy I3 3
Combining Equation (4a) with Equation (7a), we obtain
2hs _ by _ _
R
Similarly, from Equations (4b) and (7b), we obtain
2h
e 3h - fe o]

Considering the order estimations (6c), we shall find that the axial components of
the electric field€s and the electric current density {. can be safely neglected
in comparison with the x- and the y components within the accuracy of the linear-
ized theory. Thus (4c) and (4h) can be respectively, approximated by

%i;‘! - .‘?a_‘:'.l‘ o (11c) %—;’i +%Sf-=o (114d)

Equations (4f) and (4g) imply that 3"/3: and a."/a. vanish in the present approxi-
mation. Thus the induced electric field forms a quasi-two-dimensional field. Re-
membering Equations (6c), we shall find that the last parenthesis of the right
hand side of Equation (5) is the order of o(& Z,* ). Neglecting the higher order
terms, we have C:T;’ 91.: + oF

—

usr | os —F— s
Combining this equation with the equation of state of an ideal gas, we have

-f

rv‘ const
where ¥*denotes the ratio of the specific heats ¢#"/C)" . The fluid conforms the
law of the adiabatic change within the accuracy of the linearized theory.
Introducing the Mach number of the uniform flow
Mo = U.‘/Q.‘
where @' is the free stream speed of sound, we have

s _(de
Mo TF)- (12)
From Equation (llc) we shall introduce the quasi-two-dimensional magnetic
potential such as




¥ 2Y¥
,-%—; hy= 5y (13a)

Eliminating ‘u from Equations (lla) and (11b), and considering Equations (llc) and
(11d), we obtain

2V Ju
3 3y e
From this equation, we can introduce the quasi-two-dimensional velocity potential
defined by
L. -1
w=3x o9 (13b)
From Equation (11d), we shall introduce the electric force function L such as
_a.n oo _
o \‘ ) A dx (130)

Combining these equations described with each other, we shall obtain the fundamen-
tal equations governing Y , y and 2% such that

A[ia‘ B2 3.%'— Btag—;} {A"'g-;—‘ —RM%S_BIQ R"'Sl;‘-][ tﬁ}:o %)

AJL:O (15)
LR S
with A= g;\ + %F and B*=M>2~—1

If the uniform flow is subsonic, B? takes the negative sign. Besides, the
unknown functions ¥ , P and J) have to satisfy the following supplementary equa-
tions.

Ay - B* [ast 0(92 2V a.nil o

s (l16a)
ow + [F¢eR. (3T -3¢ +2M] -0 (16b)
_p2)? _ a P =
(a-B¢ -B'a%;)aw+B'a oy=° (16¢)
ol p)
(Mg_s\_R,_, 35)a¥ R Sopp =0 (16d)

The axial components of the perturbation velocity and the magnetic fields
can be given by

wgr+ Q(W"W‘“n")

hy= 22 4R (0~ o) (17b)

Considering Equations (13b) and (17a) we find that the velocity field is irrota-
tional in the sectional plane perpendicular to the s-axis, but it is rotational in
the meridian plane. The situation is the same for the magnetic field,

(17a)

III FUNDAMENTAL EQUATIONS FOR INSIDE ELECTROMAGNETIC FIELD

In the interior of the body, the Ohm's law is simply represented by




‘j:-.'.=RL CSx (18a) -j‘_l: RaCy: (18b)
with RL = 4w u—b‘ U: L:

where Sy denotes the electric conductivity of the body, and the subscript "i" de-
notes the quantities in the interior of the body. The Maxwell's equations are rep-
resented by Equations (4a)-(4h). As described above (c.f. equation (6¢c)), the
axial component of the outside electric field €s is negligibly small. If we con-
sider that the s-component of the electric field should be continuous on the sur-
face of the body, and the thickness of the body is the order of 0(%,) , we can
conclude the s-component €s{ of the inside electric field to be the order of O(T!).
Remembering Equation (18c) we can safely neglect €5 and jsi within the accuracy of
the linearized theory. Considering Equations (4c) and (4h), and neglecting the
higher order terms, we can introduce the inside magnetic potential \y; and the in-
side electric force function J); defined by

L & 2 W
L:..'. =3 l’y; = 5'\7 (19a)
Ju: QgL
€xe ':Dav CY.' =~ 33 (19b)

Using the similar treatment as that for the outer field, we shall obtain the fol-
lowing fundamental and supplementary equations governing \P. and QL

Y
B(0+35)Y: =0 (20)
DN =0 (21)
Y Y (22)
A('Po+ e + RLS =0
The axial component L,;_ of the magnetic field can be given by
2 .
hy: = aq: +Ry i (23)

IV GENERAL SOLUTIONS OF FUNDAMENTAL EQUATIONS
(A) OUTER SOLUTIONS

First we shall consider the supersonic case. Since the fundamental equation
(14) 1is linear, the general solution should be represented by the sum of three in-

dependent solutions 1{’3 , Wa and W@ such that

Q= 03+ bur g, @

The solution QQ satisfies the Laplace's equation,

At(’a:o (25)

Introducing the Laplace transform ‘?.. of the solution Ya , and the Fourier trans-
form G’. of the solution Y, with respect to € , we shall obtain the equations




governing T{: and @, such that

(A-w)Pa=0 (26a)
(0-8) Pu=0 (26b)
with

= & fb"-) a+ (B2QR)

o JBRDE R 2B Ba-RuIA B R 278)
p- 2 ful-8)-i (B asRx)

+\/(B‘+u)’~w‘+z;.w (8+)(B*Q-R..)- (B*a+Rm)" (27b)

where N and W denote the parameters of the Laplace and the Fourier transforms,

respectively. The solution of Equation (26a) satisfying the condition that the
perturbation velocity should vanish at infinity, can be expressed such as

B, B,0) = 2 A (3) Kn (Vo Peos (04 (X)) (28)

p=O

where I~, 0 |S denote the cylindrical coordinates, Au(k} and e/;.(k) the arbitrary
functions of A\ , andX.(Vei *) is the n-th order modified Bessel function of the

second kind. Near the body, where v is small, the Bessel functions can be expanded
into the following series,

K.({&r)=- {"J(‘%V&“)+E§ - g4 flog (dvar) + T~ 1}
- flog (A v@ )T 24
KOZr) = 25 o2 a v {lag (hva )+ - 43
+ % (@Y {logUva D +T-Ffs .
4

Ka (12 ) e & Lr,-ﬁ -«:l_;_‘ {|°3(%g,.)+z-_}}+ .....

n n2 (n-3)!) 3 (k-4

with C = 0.5772

Remembering (27a), we shall find thate” takes a moderate value for a moderate
value of A , when the parameters B* , Q@ and Rm are the order of unity, O(1!)

In such a case we may take the first three terms as an approximation of the Bessel
functions for a small value of © Moreover, the second and the third terms in




the series expansion of Ko are much smaller than the first term. Since the second
and the third terms are not essential, they may be safely replaced by

! 2 | 2 4 32
From similar considerations, K, and )(, can be approximately represented by

K‘ (r; r) t—r’.d'—"_"‘ %‘E 'o)"' + '!J“(m V")s(‘lji‘ -%)

! 4 o 2
K. (ﬁ v-) = ?(;‘—'_;4)-— 7 lojr'
For convenience, we shall introduce the complex variable in the sectional plane
such as Y

2:1,44:5 =re

Using the approximate expressions of Kw , and applying the inverse Laplace
transformation to ?‘, we obtain the solution in the following form,

Wa = "Pn, "’(p.,"" (’q; + cpa)
?a. {‘°3{'V§ +E} a,
Pa) = Re {“- log = + g“»{“]

= at - hn-{
- o F - o - ~—2 J
War = Re g 2 a‘!(lo’l ')4'“"31! neg "t (29a)

Pays Re G ae [T (lg2-2)s a2 ?}37‘3'%}

~(n-2)
.9 —dz‘o,ii-&z C L < ]
E""e.‘ ra3 (w)(w-2)

with

L]

]

where Q.(s) and @ (s) denote arbitrary pure real and complex functions of $§ ,Re
denotes the real part of complex function, and« means the linear operator corres-
ponding to the expression (27a). Similarly, by the use of the Fourier transforma-
tion, we can obtain the solution W, in the following form

@y = LP;‘ + ‘.’h' + (’b. -9-(95, (29b)

The functions ‘9).,45, , W and$s, are obtained by replacing'( ,de ,” and A& in
Equation (29a) by B ,be. and b , where @ means the linear operator correspond-
ing to the expression (27b), and b. and b, denote the arbitrary pure real and the
complex functions of s different fromd.® and Ql,(s). The general solution \f, of
Equation (25) satisfying the condition at infinity should be given by

Qa = Re [‘L r log 2 “2 3’" %J] (30)

where \7(3) and’,,(s) denote the arbitrary pure real and the complex functions of s,
respectively. Substituting Equations (29a), (29b) and (30) into Equation (24), we
shall obtain the solution such that

Y=Y+ P, +¥ 4+ Y,




with

(Po' q‘." ('pA., "‘Pt‘ \'Pnt + "pba

g, - LP’*"PM*‘P&, L’S"‘Pa: *'Pbs (la)
Considering Equation (29a), we can find the following relations,
AQS‘A”A:‘Aw¥,=O A"Po'o
A4aazol@ar By, =g, 484 =0 (31b)
AtPa,=4‘-Pn; A‘h,=p‘h, AAA(?3=O
and oY) = D(/o, "z‘,)OUP‘)
0(9,) = o(T,Hyo(q) (31¢)

0(¥3) = 0 (.*) 0(Y,)

Since the fundamental equation governing\y is the same as that governing { ,
we can obtain the solutfon ¥ in the similar form,
V=Y, +y, +¥+Y; \p,_zw“+¢d‘.
Vo= P+ Ve 32)
¢, = wh*“’u*“"c ‘P’:wCS*q‘JS
The functions {8 , ¥eo ,*‘d. , Yo , 04, W«., ,q’dg ’ L’cz , and Q’J; can be ob-
tained by replacing the arbitrary functions 1V, , a. , &, , be , and b, in
the solution \§ with the different arbitrary functions 2 , Co , €, , d, , and
Cl.. , respectively. We have the similar relations to (31b) and (3lc).

The solution of Equation (15) satisfying the condition at infinity can be
readily written in the following form,

L =Re[-illege+ T k2" | (33)

Next, in the subsonic case, both the independent solutions ‘pa and ‘Pt are
obtained by the Fourler transformation. The results are given in the same expres-
sion as those of the supersonic case by replacing the linear operators < ande
withY and §

(B) INNER SOLUTIONS

The solution of Equation (20) without any singularity along the axis (¥Y=0)
except the logarithmic singularity is given by

P = W Vs (34)
The solution $mis the harmonic function such as
V.. =“R.['Lu|c3€+§m.¥h—) (35)

The Fourier transfomv‘of the functionyy with respect to $ should satisfy the

equation ) F, =
(a- w* Yy =0 (36)

The general solution of Equation (36) without any singularity along the axis is ob-
tained in the following form
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-
Y, = S Fu(w)Jnliwn) cos(ho)-“],,(w)) 37)
hz o
wherernlﬂ) and}.(vl) are the arbitrary functions of W , and J-..(“"")denot:es the n-th
order Bessel function of the first kind, Since the thickness of the body is very
small, the Bessel functions can be approximated by the first two-terms of their ex-

pansions into the v -power series, such that
. T .
Jn liwr) = AL ST i
" w!2™ ()i gnt —
Using this approximation, and applying the inverse Fourier transformation to\¥¢
we shall obtain the solution Ly such that

Yo = Vs + Wiy +¥p,

’

with

w;| '\vm.'w‘a w‘o"k‘ Z ;hzh

Y=fo-o ¢ "~ 5" (2 _n (38a)

=t~} (s) - 5 = Fn

-+ Yo -’R“%_E; T 2
Considering the solution (38a), we shall find the following relations,
g“

i\ Y] AVg, = -3 V5, ADVYs, =o (38b)

and
o(¥s,) = 0(Z,) o (¥y,) (38¢)

The solutionf};of Equation (21) can be easily found such that

= a »
n;=m(-‘f',(s)loaz+‘[_t..2 ] (39)
N3y
As we shall discuss later, the logarithmic singularity of the inside solu-
tions is caused by the current flowing in an infinitesimally thin filament of in-
finite conductivity inserted along the axis of the body.

V SUPPLEMENTARY EQUATIONS

The general solutions obtained above contain several arbitrary functions of
S . They should be determined by satisfying the boundary conditions and the sup-
plementary equati ons (1l6a)-(16d) and (22).
Remembering Equations (31la)-(3lc), and neglecting the higher order terms
o(tf) we can write Equation (16a) such that

< GarB,-B* {L¥ . af; (p-wrn)f=o 40)

Substituting the expressions (29a) into Equation (40) and comparing the co-
efficients of the terms involving the same function of 2 , we shall obtain

* drfe _al dh ] _ 4
—d—s!"*.aicls d< ‘;s}‘° e
.(a. "PL.' B![q::“)‘u‘s)‘ a{q'.(s),‘u.(s)-c:(i)-da ‘t)}] = O (lolb)
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and < . “
o at, +F$.-B [au‘; (s) +lb', () + F o [8)

(41c)
for n 21

Integrating Equation (4la), and considering the condition that all the perturba-
tions should vanish at infinity upstream, we have

ralale) blws gieo- €0 -dlo h ok, 6] <o

%{l-..a((‘,-l‘zﬂ"s):o (41a')
Similarly, from Equation (16b) we obtain

4L R (n-feTs) =0 . (41)

LC, .,Fd, e s)va (5)+R..ia (s)+b, ) Ca'(5) -d (s)ﬂ (41e)

and -(d;‘..+? d,.~ [C. (s)+ diy (s)+lh) (s) +R., Zal,, (s) +b..(s)
g (9= @ ) ~dl ) ~bh () + Kk, (Q}]=o h2l “1)

By the use of the same procedure, Equations (16c) and (16d) are respectively, re-
duced to

&b, -B [o(m (s) +gl>o) safta *\3% -d €, gJ ﬂ (41g)
_("“‘.,P*c“. + [—{ C. (s)+@d(. () 4R ie(ql.* ?H?u -C, ‘?‘“»}] =0 (41h)
with a,xa, )bosl. C.=C, and 4| = d.
The supplementary condition (22) for the inside field supplies
ngt +R. M =0 (411)
4
d"ﬂas *+Ry b =0 “15)

V1 BOUNDARY CONDITIONS

We shall take a plane perpendicular to the § -axis. The cross section of the
body in the plane forms a closed curve, C, say. The outward directing normal vec-
tor and the counterclockwise tangential vector of the curve C are denoted by M
and ¥ , respectively. Within the accuracy of the linearized theory, the boundary
conditions can be given in the following form

(i) Since the fluid must flow past the body, we have Q(P _aon
on 95  (42a)
If the body is given, the right hand side of this equation is a known function.
Integrating Equation (42a) along the curve C with respect to7, we obtain

a.(s)4b,(5) = 552 (5) (42b)

vhere Z(s)denotes the area of tte cross section of the body,.

(ii) Since the magnetic field should be continuous on the surface of the
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surface of the body, we have

3% _ oWy, , Vi 43
Jz - ot ' J% e
¥ . AV |, AV (430)
on an on
gt‘ R ($,-9,-52) = 9‘“° +98"’°'+RLJL (“3¢)

Integrating Equations (43a) and (43b) along the curve C with respect to T , we
obtain, respectively

2= I",, (434d)

and C.+elo =—¥.2 (S)G(S) (43e)

i Gro=4 § v\[1I-CE)ae

When 2« /3% is much smaller than unity,G(S) can be approximated by the sectional
area? (5) of the body.

(i11) Since the tangential component of the electric field should be contin-
uous on the surface of the body, we have

DL _ 9N
dn ~In (44)

™
The total charge surface density 0'.' induced on the surface of the body

should be given by 3.{). D.ﬂ.‘
% =3%
3T (45a)
ith - 4net
v G H + U A
Integrating Equation (45a) along the curve C with respect to T , we shall obtain
$oide =2r (Ny-T3) (45b)

The left-hand side of this equation denotes the amount of the surface charge per
unit width in the s-direction.
The total amount-z of the surface charge can be evaluated by

% Ié 0;dZds = ZWI{P (s)-T, (S)}ds (45¢)
with q.= Sw
H.‘U‘L"

(iv) We shall consider the condition at the axis (v=zo0).

(a) In the usual case we have no singularity within the body. All the vari-
ables should be continuous and finite in the interior of the body.

(b) We shall consider such a geometrical configuration that an infinitesi-
mally thin filament with infinite conductivity is inserted along the s-axis., The
electric current flows in the filament without any electric field along the fila-
ment. Moreover some electric charge can be induced along the filament, and the
source singularity of the electric field at Y=o can be permitted. As a result,
we may have a circular magnetic field and a circulation of the fluid.

Considering the continuity of current, we have

. 4w 3*
J=2wlp  wih  J= rfL. (46)
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*
where J denotes the electric current flowing in the filament. The length density
P of the electric charge induced along the filament can be obtained by

§9'n“J'Z 2nls (47)

Remembering the fact thatr:and[; denote the source strengths of the inner and
the outer radial electric fields, respectively, we car realize the physical mean-
ing of Equations (45b) and (47). For example, we shall consider the case, where
both I and r} are positive. In the interior of the body lines of electric force
corresponding to the strength [s starts from the filament and terminates at the
surface of the body. In the outside of the body lines of electric force corres-
ponding to the strength f; starts from the surface toward infinity.

VII CIRCULATION

We shall obtain the five relations among the functions ‘7 , r; s f; , rl
and s represented by Equations (4la'), (41d), (41i), (43d) and (46).
(a) If there is no filament along the axis, we can put

J =0 (48)
Combining Equation (48) with the five relations described above, we shall obtain

== =l¢=l=0 (49)

Thus we have found that the circulation of the fluid vanishes together with the
singularity at the axis.

(b) We shall consider the case, where the filament is inserted along the
s-axis, and terminates at the both pointed ends of the body. In this case we can
put

LT3

s
(50)

J9=0 for SSo and |
J(s)#0 for ©0<s<y
where physically conaidering,]ks)should be a continuous function of $§ . Combining

Equation (50) with the five relations amoung [ , R f; » (4 » and r} , we
obtain

A rn
n-4 Be(g-0r- L 4%
g F (51a) S Q 7S (51b)
R=s5 0 Gl o n (514)
L (51e) t ds
J= K3l r with @ = SR, . Qy=SR,

By the use of Equations (45c) and (47) we can calculate the total amount of
the electric charge on the surface of the body, and the length density of the
charge along the filament, respectively, such as

1', =ZWS {(—") r“l s QL %‘P;'}ds (51f)

and

A (51g)
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Thus, if the circulation T of the flow is determined, all other quantities [} ,r,,
D y 15 J ’ 7‘ , and f‘can be obtained, It is of interest to consider the
following extreme cases,

(i) 1If the conductivity G'b‘ of the body vanishes, all n except r'a‘ should
vanish, The velocity field has no circulation as well as the magnetic field, No
current flows in the filament, Remembering Equation (39), we realize that I's
represents the radial electric field in the interior of the body, Then the inside
radial electric field may remain in this case. As a result f, and 1, may exist,

(ii) In the case, where the conductivity s of the fluid vanishes, we find
that all s except r; vanish., The velocity and the magnetic fields have no cir-
culation, This case corresponds to the conventional case, The outside radial
electric field corresponding to I"'J may remain,

(iii) 1In a hypersonic flow, in the presence of an applied magnetic field, we
use the magnetohydrodynamic Stokes approximation frequently, In this approximation
we suppose that Rw. andRy vanish, but @ and Q4 still remain finite, because § be-
comes infinite, The circulations E and T4 of the outer and the inner magnetic
fields vanish, but the circulation [i of the flow and the electric radial fields
r} and l‘,- may remain, Corresponding to this fact, the current J vanishes, while
the induced charge distributions %, and f‘ remain,

We shall return to the general case, where K. and Q are the order of unity
at most, Remembering Equations (31b) and (42a), we realize that (f, should satisfy
the two-dimensional Laplace's equation and the Neuman's boundary condition, It is
well known that the solution f, can be determined except an arbitrary function
R‘S-inloj E?. If the curve C is smooth, we have no mathematical reason to determine
the value of [[(§. If the curve C has a sharp edge,®® [T may become infinite at
the edge, We can choose an appropriate value of |, in order to prevent the infi-
nite velocity., These circumstances are similar to the conventional stationary flow
past a two-dimensional obstacle with a sharp trailing edge, If the fluid could
flow around the sharp corner in the initial stage of the magnetohydramic flow, the
tangential velocity would take a very large value, Then the normal component of
the induced current might become tremendously large, unless the body is an insul-
ator, According to the interaction between the induced current and the applied
uniforin magnetic field, a large Lorentz force exerts on the fluid. Since the
fluid is detained by the Lorentz force, it cannot flow around the sharp edge. Thus
there occurs an appropriate circulation around the curve C which will make the po-
sition at the edge coincide with a stagnation point,

By the use of the Fourier theorem, we can obtain the following result, The
outside region of the curve @ in the z-plane can be conformally mapped into the
outside region of the unit circle e‘o in the { -plane by an appropriate analytic
function §(a) . The function dn/ds in Equation (42a) is expressed as the func-
tion of ® and $ such that

_sﬂ = E(G, 5) (52a)

o

I1f the functions $(2) and E(O,s)are found, the circulation F. of the flow can be ob-
tained such that
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r =,.$:E:: I:I(O,S)shan‘s 4@

nay ¥ (52b)

d
with V(8,¢)= E(S-S)‘Z—z{ -

. ©
and § :‘78‘

For an example, we shall take a slender body, the sectional form of which is
a thin symmetrical Joukowski aerofoil shown in Fig. 1, The chord length and the
thickness of the Joukowski profile are represented by the functions <(s) and d(s)
of s , respectively, We shall suppose that dh)lc(s) is a constant, and that the
symmetrical plane of the body has a small angle of attack, A , against the uni-
form flow (c.f, Fig., 2). Applying the general expression (52b) to this problem,
we obtain

r =_L,;-(:){ I+ %(?)} (53)

Since both the edges of the body are supposed to be pointed,¢ls) vanishes at 35O
and $S= |, Remembering Equation (5le), we find that the assumption (50) is self-
congistent in this example.

VIII EXAMPLES
Hereafter we shall restrict our discussion to the case of small value of Ru..

and @ . Expanding the right hand side of Equation (27a) into the R,, and @ power
series, and neglecting the order of square of Rwm and @ , we have

£=B*(N+@r).o(R,Q%)

Considering the character of the Laplace transform, we shall obtain the linear op-
erators « and il” iﬂ + C z in Equation (29a) such that,

a - .
,(:5"(:-;.*“2‘*;)*0(Q'R~) (54a)

(lvg-qI*?:)a.(s) = a,(s) loy E —[a.'ﬁ)loj (s~¥)d}

+ 3804 + o(al R
(54b)
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Considering the character of the Fourier transform, we shall obtain the operators

and Z‘??*v; + 8} such that,

p = - 3-:—‘ +Rn g—s' (54c)

Uog £ VB +T)b, (9 =1yt - 1§H§>|¢3( -5)45%
+3 Y:L:(;)l"j ($-9)d$ - _a;j.;.(g)dg (54d)

In the subsonic case, both the operators Y and s are connected with the Fourier
transformation. We shall obtain

,yg_],(d‘-;o.o‘)

(55a)
Uog V3 + E)ante) = au@loy b = 4 fa (3)11g(s- 1)
' S5
/By (5948 + @ e ($dY
. (55b)

53 P (55¢)

(long_*c) (‘03 \("*c (554)
w,}LL-‘-:‘B “'M:

From the character of the Fourier transformation, L (s)should be finite for
- §s & ¢+es, Considering Equation (42b), this requirement implies that 2'(s)
should be continuous for-o $s & +e« . Then ?_(s) should vanish at$=e and S={(,
Therefore the body should have a pointed nose, and a pointed or cylindrical tail,.

We shall consider two examples.

(i) Slender body of an elliptic cross section at zero incidence (c.f. Fig.3).
We shall suppose that no singularity is at the axis, The sectional form of the

body is given by
L A
X s34 _ -
(k+€)" (x-8)*

where k(s) and E(5) are the functions of § , and €Ik is supposed to be a small con-
stant, Neglecting the terms of the order of 6( i'/k‘), we can write the boundary
conditions in the following form,
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From Equations (42a) and (42b) we have

@, (9 +b,(5) = # 4 (K°) (56a)
a,(s) +b, (s) + 2,(5) = - -::(K £'ax'e) (56b)

From Equation (43a), we have

- Z(C.* do)% ‘(C;"Ai—*l‘l\ it

™ (56¢)
== 2(f,+m)K* +f, (D KE
From Equations (43b) and (43e) we have
1 []
cosdo =- 5 ["(9) (56d)
<

-2 (C+do) 5 -(c1+d,+h,).;"2‘= 2(f,+m)K* (56e)

From Equation (43c) we have

, '
;.1(‘) = (G (s)+de (s)) ‘ojK - R, {(C.* do) -‘(q.-ﬂ-,)} '°J K (56£)
t
Pomemi vt 36 -L £ ke
] 1] ] '
= % {C. (s)+d, (;)} ¥ ‘.‘{‘ {Cl (S)-td,'(S) +Lv‘ (s)}
- <
R, [—'Z {C.«td.-(q.-bb,,)s
..‘. d L,
+ K C&’ T g t‘(at*ba*gt)’kl}

(56g)

From Equation (44) we have

k

t,=- — (56h)

K}

In this case all the complex functions al, (s), IL.(S), etc, are reduced to the
pure real functions Qu(s) , b (s) etc,, respectively. Combining these eight differ-
ential equations (56a)-(56h) with the seven differential equations (41b), (4lc),
(4le), (41f), (41g), (41h) and (41j), we can determine the fifteen arbitrary func-

tions q, , &, » €, + do v §e » Qe v by s v d, "\. ' 3o ')'t. » My o my and‘t"
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Thus we obtain the solutions ¥ , , Yo, L, and S,
(31c) and neglecting the higher order terms, we have

P=9.+

where Lp. =(l°j _&ﬁ‘_z)% 'Z'(S) for the supersonic case

Remembering Equation

(57a)
. 2) Lo
= ('03'1,:\{;*#6) 7 (S) for the subsonic case

Fos Refae 2oy 2 -k3E'0 31}
where W=\ vy,

o= -y 11z OEED s (ot o0) BT () ]

(57b)
for the supersonic case
Y, sofand P are replaced by ¥ and § for the subsonic case
X dbhs.
¢, ’X'-[ § ( )r"’a K E'w) g ]
with
d‘h‘, - Em 0‘ ! R
(d‘ ) = < {Zzs) log K §
where W{, -; N q/"l
R WA TIVEIR
e, 2 $£K ( c%,;)&ofge(g) (57¢)
K*e Bms C“u'. \
=i {- 4+ Ri+Rn, (?T reg 2% (574)
- < _Rm dbsi a‘] (57¢)
ALo= R-.[?gk Ry +Bm ( ds >"=°
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The velocity field in the sectional plane consists of the diverging or converging
radial flow and the quadrupole like flow, The perturbation magnetic field is pro-
portional to Rw. The outer electric field is represented by the field due to a
quadrupole at the origin. The lines of electric force for the inner field is sim-
ilar to the stream lines of the fluid flowing along the inside corner of right
angle., By the use of Equation (45a), the surface density &, of induced charge is
represented by

dh; R .

The surface charge €7 takes the maximum value for an insulated body ( Re=o). As
the conductivity 3* of the body increases, the current flowing through the body
increases, As a result the charge ®v will decrease., Moreover this may cause the
decrease of the electric field given by Equations (57d) and (57e). Remembering
Equations (7a) and (7b), we can introduce the electric current function ® defined

by

Y] -1
glaw 1Y =" 3= (59)

where F= R...(“p.' \{/.-t,n_\

The outside current field is represented by superposing a quadrupole field on
a circular field. The electric field is shown in Fig. 4 schematically.

(ii) Body of revolution at a small incidence, We shall consider the flow
past a body of revolution at a small incidence, &4 . As shown in Fig, 5, the x-axis
is taken to be vertical, By the use of the similar treatment to the former exampk,
we can solve the present case., Neglecting the order of square of Au , ¢ and Y
are approximately represented by Q.MP, and W, + ¢, , respectively, The functions

¢, and P, are obtained by replacing K(s) in Equations (57a) and (57b) by Rls) ,
where R(s) denotes the radius of the circular cross section, The functions (.p.
and \, are obtained in the following forwm

q' = R‘- [2-‘;2'(5”031‘ éj;r (/A‘S Z‘( )+ Z/uz {S))%]

(60a)
2 dh,) [ _ El(;) ds e -L]
ith wzﬁb[‘gz——(g)(Wstooae _{‘/“s?;—r:oa
wit
d“ls:.] - Eh—- é_i ’ | R()1
ds Jeso 2w 45 Lu A (60b)

The functions Wi 1 ,.(LL- and the surface charge distribution are obtained
in the following form,
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Yo =500, ( 600)

where
fo- z’“fZ(s)ro,t(s)ag
= - ",;;.
oz a2 (75) R

Yo

. R o i (60d)
JL Rm+Re T Z(S)R‘(e)

. - 2 (60e)
L= 2o +R;MRC( ) e
2Km .
g = sin 6
b R (61)

The velocity field in the sectional plane consists of the diverging or converging
radial field and the dipole like field. The outside electric field is that due to
a dipole at the origin, and the inside electric field is uniform, The coefficient
Rw [Rm ¢Ry has the same physical meaning as in the previous example, The electric
field and the surface charge distribution are schematically shown in Fig. 5.

IX TOTAL FORCE

The force exerted on a body in the uniform flow, and the applied magnetic
field consists of the hydrodynamic pressure and the electro-magnetic force. Since
there is no applied electrostatic field in the present problem, the total electro-
static force exerted on the body should vanish, As the Lorentz body force exerts
on the induced current in the interior of the body by the applied magnetic field,
it should vanish for an insulated body. According to the electromagnetics, the
Lorentz body force can be expressed by the surface integral of the Maxwell stress
tensor, By the use of the momentum theorem, the total force“can be expressed by
the integral over a control surface,fi say, such that

F - ([conds-2ffpetsVIas 2 S{(HAM-4 W0} as, o
S, S,

s' »
with '=
F = 1o Ul

where W denotes the velocity vector, and“) denotes the outward directing unit
vector normal to the control surface,

(A) DRAG

'y
The drag D is the s-component of the total force . After the similar
treatment to the conventional case (13), the s-component of Equation (62) can be
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reduced to

D= m”Zts)Z (3“"5-;‘;,“‘45

"7QI{‘§N*m(M)"°}"S

c(s)
Sc99 (99 L\ D¢ /a9 a-r\} _
_Zaf§ g—is %—;)(a‘n-ﬁa—n)*Fs;E-(—%*_.c) ds JCdS
ARy *
~
T zw HZ (s)‘ilds-f O(QLR.)
sov Mo>1
. (63)
with D = b

zel UM L®

where €($) denotes the cross sectional form, and MW and C denote the outward
directing normal and the counter-clockwise vectors of C, respectively, Since the
drag given by Equation (63) corresponds to the integral of the hydrodynamic pres-
sure over the surface, the Lorentz force does not make any contribution to the
total drag within the accuracy of the present approximation, The first term of
the right hand side of Equation (63) represents the conventional supersonic drag,
In the subsonic case, this term is dropped, and other terms do not change, For
example we shall calculate the drag for a slender body of revolution at a small

incidence, Substituting the solutions (60a), (60b) and (60d) into Equation (63),
we have

D‘z"nHZ‘S)Z(i)’t‘H d ¥ds

;[Z(s)fZ(s) leg 32 3 d¥ds
) &"'j {2"(‘)1‘1 log 8?;((9 ds

Rm L
-2t @ Zisd
/<7 ReeRe I v For M, >1 (64a)
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The first term of the right hand side of Equatlon (64a) represents the conventional
supersonic drag, which is the order of 0(Z,)* . The sign of the second term cor-
responds to the s-distribution of the cross sectional area, and the order of this
term is ©(@7T,*) ., The third term represents the mutual effect between the com-
pressibility and the conductivity, This term always takes the positive sign and
is the order of 0(&T}|e 4, The last term represents the so-called induced drag,
which is the order of o(a'z“) The induced drag takes the negative sign in the
present case, Since the third term predominates among the last three terms of
Equation (64a), the total drag increases by the electromagnetic effect. Putting
Ar=o0 in Equation (64a), we shall obtain the drag for a body of revolution,
This expression coincides with the result due to Ando(lz), except only one term,
The difference results from his treatment, where he omitted the last integral in
the pressure formula (8a) before substituting it into Equation (62). 1In the con-
ventional case, the term due to the compressible effect vanishes unless the area
of the base section Z(i) does not vanish, In the present case, the terms due to
the electromagnetic effect still remains finite for a body with a pointed tail,

In the subsonic case, the drag is represented by

: z,Hz 275) Lk "n S| 43ds

(64b)

+ Srf{ m} 1.3 YT ds —zluﬂ IZ“)"

where L& = l- M: For Mo <

The conventional drag vanishes, The behavior of other terms are similar to those
of the supersonic case.

(B) LATERAL FORCE

X* By the use of Equation (62), the x-and the y-components of lateral force,
Y* , are calculated such that
? L

XeiY =
2%y il '
zji)( -S35)e a*zdnj:cm{ ‘%.) i’,’[ }c ¥ uas
: 29 :o
+zaf§ sf{ a 3{},%(; an.zds“ds
+o(Q3R2) (2
with __’3______ Y’
L ter UM L” YW

where 3 denotes the angle between the normal vector 7 of the curve C and the
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x-axis,

Applying Equation (65a) to the body of revolution at a small incidence, Ve
we obtain

x=-28m {2- XS fZ(s.)d:
Y= o0

(65b)

The equation (65b) implies that the 1ift takes the negative sign for a positive
value of the incidence, s« . This negative 1lift corresponds to the negative in-
duced drag discussed above, For the sake of considering the phys.cal meaning of
the negative 1ift, we shall decompose the lift to the two integrals of the pres-
sure and the Ma>well stress tensor over the surface of the body. The integral of
the pressure is iven by

]‘[Cp cos® Ris)d6ds =-ZQf"IZ(S}ds (66a)

The integral of Maxwell stress tensor is given by

[(BPr 1 g
-2 S'f fl,,wBR(s)dedsa-E"_"C“_JZ(S)AS (66b)
o ‘e + R
' Vi

First we shall consider an insulated body., We shall suppose 73(9 is positive for
0 <CSCS, , and negative for S, €« S<t, For the region, where 'Z,(.r)x.s positive,
the velocity field in the sectional plane consists of the dipole like and the di-~
verging radial fields (c.f, Fig, 6). As a result, the induced current flows
clockwise around the circular section C, The Lorentz force due to the correlation
between the induced current and the uniform applied magnetic field acts in the
inward direction normal to the circle. Remembering the velocity field shown in
Fig, 6, it is realized that the velocity due to the dipole and the Lorentz force
take the similar directions with each other on the upside of the body, but they
take the opposite directions on the downside, We shall consider a couple of small
volume elements of fluid flowing along stream lines of the upside and the down-
side of the body, The work performed by the Lorentz force when the fluid passes
along the stream line of the upside from © to s ($<S,) , should be larger than
the work performed when the fluid passes along the stream line of the downside.
Thus the pressure on the upside is larger than that on the downside for the same
section, € . After the position S, , Z'[s) is negative, The velocity field in
the sectional plane consists of the dipole like field and the converging radial
field. Then the induced current flows counterclockwise, and the Lorentz force
acts in the outward direction, As a result, the work performed on the upside is
smaller than the work performed on the downside. Thus the excess pressure on the
upside decreases as S increases (S5,<s), and the pressures of the both sides
take the same value at the tail, 3= . Since the upside pressure is larger than
the downside pressure, the integral of the pressure distribution takes the nega-
tive sign (c.f. Equation (66a)),

Next we shall consider a conducting body. Remembering Equation (60e), we have the
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inside current density such as

Jri =0 —iu il B (67)

The Lorentz force due to the correlation between the uniform horizontal in-
duced current and the applied magnetic field acts downward in the vertical direction
(c.f. Equation (66b)), Thus, both the integrals of the pressure and the Maxwell
stress tensor contribute to the negative 1lift,
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Figure 1 Cross section of slender body in z-plane: Symmetric

Joukowski aerofoil

JOUKOWSKI CROSS SECTION

Figure 2 Meridian section of slencder body at small incidence
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Figure 3 Cross section of slender body in z-plane: Ellipse
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Figure L Induced electric field for body of elliptic cross section
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Figure § Induced electric field and surface charge
distribution for body of revolution at small
incidence




Tifure £ Perturtation velocity field in z-plane for

body of revolution at emall incidence
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